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Abstract. In this paper, the concept of interval-valued intuitionistic fuzzy set to UP -
subalgebras and UP -ideals of UP -algebras are introduced. Relations among IVIF UP -
subalgebras with IVIF UP -ideals of UP -algebras are investigated. The homomorphic
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some related properties are investigated. Equivalence relations on IVIF UP -ideals are
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1. Introduction

The theory of the fuzzy set introduced by Zadeh has achieved a great success
in various fields. Atanassov [1] introduced the intuitionistic fuzzy set (IFS),
which is a generalization of the fuzzy set. The IFS has received more and more
attention and has been applied to many fields since its appearance. The theory of
the IFS has been found to be more useful to deal with vagueness and uncertainty
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in decision situations than that of the fuzzy set. Atanassov and Gargov further
generalized the IFS in the spirit of ordinary interval-valued fuzzy sets (IVFSs)
and defined the notion of an interval-valued intuitionistic fuzzy set (IVIFS).

BCK-algebras and BCI-algebras [4] are two important classes of logical
algebras introduced by Imai and Iseki. Neggers and Kim [9] introduced a new
notion, called a B-algebras which is related to several classes of algebras of
interest such as BCK/BCI-algebras. Kim and Kim [8] introduced the notion
of BG-algebras, which is a generalization of B-algebras. Senapati together with
colleagues [2, 5, 6, 10-23] have done lot of works on BCK/BCI-algebras and
related algebras. Iampan [3] introduced a new branch of logical algebra called
UP -algebras, which is related to BCK/BCI/B/BG-algebras. Somjanta et al.
[24] applied the concept of fuzzy set theory to UP -algebra. Kesorn et al. [7]
introduced intuitionistic fuzzy UP -algebras and discussed their properties in
details.

The objective of this paper is to introduce the concept of Atanassov’s interval-
valued intuitionistic fuzzy sets in UP -algebras. The images and preimages of
IVIF UP -subalgebras and UP -ideals has been introduced and some important
properties of it are also studied. The rest of the paper is organized as follows.
Section 2 recalls some definitions, viz., UP -algebra, UP -subalgebra, UP -ideal
and refinement of unit interval. In Section 3, UP -subalgebras of IVIFSs are de-
fined with some its properties. In next Section, IVIF UP -ideals are defined and
related properties are investigated. In Section 5, homomorphism of IVIF UP -
subalgebras and UP -ideals, and some of its properties are studied. In Section 6,
equivalence relations on IVIF UP -ideals are introduced. In Section 7, product
of IVIF UP -subalgebras and UP -ideals are investigated. Finally, in Section 8,
a conclusion of the proposed work is given.

2. Preliminaries

Here we give a brief review of some preliminaries.

Definition 2.1 ([3]). By a UP -algebra we mean an algebra (X, ∗, 0) of type
(2, 0) with a single binary operation ∗ that satisfies the following axioms: for
any x, y, z ∈ X,

1. (y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) = 0,
2. 0 ∗ x = x,
3. x ∗ 0 = 0,
4. x ∗ y = y ∗ x = 0 implies x = y.

In what follows, let (X, ∗, 0) denote a UP -algebra unless otherwise specified.
For brevity we also call X a UP -algebra. We can define a partial ordering “≤”
by x ≤ y if and only if x ∗ y = 0.

Proposition 2.2 ([7]). In a UP -algebra, the following axioms are true: for any
x, y, z ∈ X,
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(i) x ∗ x = 0,

(ii) x ∗ y = y ∗ z = 0 implies x ∗ z = 0,

(iii) x ∗ y = 0 implies (z ∗ x) ∗ (z ∗ y) = 0,

(iv) x ∗ y = 0 implies (y ∗ z) ∗ (x ∗ z) = 0,

(v) x ∗ (y ∗ x) = 0,

(vi) (y ∗ x) ∗ x = 0 if and only if x = y,

(vi) x ∗ (y ∗ y) = 0.

A non-empty subset S of a UP -algebra X is called a UP -subalgebra [7] of
X if x ∗ y ∈ S, for all x, y ∈ S. From this definition it is observed that, if a
subset S of a UP -algebra satisfies only the closer property, then S becomes a
UP -subalgebra.

A nonempty subset T of X is called an UP -ideal [3] of X if it satisfies
the following properties: (I1) the constant 0 ∈ T , (I2) for ant x, y, z ∈ X,
x ∗ (y ∗ z) ∈ T and y ∈ T ⇒ x ∗ z ∈ T .

Let (X, ∗, 0) and (Y, ∗′, 0′) be UP -algebras. A homomorphism is a mapping
f : X → Y satisfying f(x ∗ y) = f(x) ∗′ f(y), for all x, y ∈ X.

Let D[0, 1] be the set of all closed subintervals of the interval [0, 1]. Con-
sider two elements D1, D2 ∈ D[0, 1]. If D1 = [a1, b1] and D2 = [a2, b2], then
rmin(D1, D2) = [min(a1, a2),min(b1, b2)] which is denoted by D1 ∧r D2 and
rmax(D1, D2) = [max(a1, a2),max(b1, b2)] which is denoted by D1∨rD2. Thus,
if Di = [ai, bi] ∈ D[0, 1] for i = 1, 2, 3, 4, . . . , then we define rsupi(Di) =
[supi(ai), supi(bi)], i.e, ∨r

iDi = [∨iai,∨ibi]. Similarly, we define rinfi(Di) =
[infi(ai), infi(bi)] i.e, ∧r

iDi = [∧iai,∧ibi]. Now we call D1 ≥ D2 if and only if
a1 ≥ a2 and b1 ≥ b2. Similarly, the relations D1 ≤ D2 and D1 = D2 are defined.

Our main objective is to investigate the idea of UP -subalgebras and UP -
ideals of IVIFS. The IVIFS is a particular type of fuzzy set.

Definition 2.3 ([25]). (Fuzzy Set) Let X be the collection of objects denoted
generally by x then a fuzzy set A in X is defined as A = {< x, µA(x) >: x ∈ X}
where µA(x) is called the membership value of x in A and 0 ≤ µA(x) ≤ 1.

Combined the definition of UP -subalgebra and UP -ideal over crisp set and
the idea of fuzzy set Somjanta et al. [24] defined fuzzy UP -subalgebra and
UP -ideal, which is defined below.

Definition 2.4 ([24]). Let A = {< x, µA(x) >: x ∈ X} be a fuzzy set in
a UP -algebra. Then A is called a fuzzy UP -subalgebra of X if µA(x ∗ y) ≥
min{µA(x), µA(y)} for all x, y ∈ X.

A is called a fuzzy UP -ideal of X if µA(0) ≥ µA(x) and µA(x ∗ z) ≥
min{µA(x ∗ (y ∗ z)), µA(y)} for all x, y, z ∈ X.
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Definition 2.5 ([1]). (IVIFS) An IVIFS A over X is an object having the form
A = {⟨x,RA(x), QA(x)⟩ : x ∈ X}, where RA(x) : X → D[0, 1] and QA(x) :
X → D[0, 1]. The intervals RA(x) and QA(x) denote the intervals of the degree
of belongingness and non-belongingness of the element x to the set A, where
RA(x) = [RAL(x), RAU (x)] and QA(x) = [QAL(x), QAU (x)], for all x ∈ X, with
the condition 0 ≤ RAU (x) + QAU (x) ≤ 1. For the sake of simplicity, we shall
use the symbol A = (RA, QA) for the IVIFS A = {⟨x,RA(x), QA(x)⟩ : x ∈ X}.

Also note that RA(x) = [1−RAU (x), 1−RAL(x)] and QA(x) = [1−QAU (x), 1−
QAL(x)], where [RA(x), QA(x)] represents the complement of x in A.

3. IVIF UP -subalgebras of UP -algebras

In this section, we will introduce a new notion called interval-valued intuitionistic
fuzzy UP -subalgebra (IVIF UP -subalgebra) of UP -algebras and study several
properties of it.

Definition 3.1. Let A = (RA, QA) be an IVIFS in X, where X is a UP -
subalgebra, then the set A is IVIF UP -subalgebra over the binary operator ∗ if
it satisfies the following conditions:

(UP1) RA(x ∗ y) ≥ rmin{RA(x), RA(y)},
(UP2) QA(x ∗ y) ≤ rmax{QA(x), QA(y)},

for all x, y ∈ X.

We consider an example of IVIF UP -subalgebra below.

Example 3.2. Let X={0, a, b, c} be a UP -algebra with the following Cayley
table:

∗ 0 a b c

0 0 a b c
a 0 0 0 0
b 0 a 0 c
c 0 a b 0

Define an IVIFS A = (RA, QA) in X by

RA(x) =

{
[0.5, 0.6], if x ∈ {0, a, b}
[0.1, 0.2], if x = c

and QA(x) =

{
[0.3, 0.4], if x ∈ {0, a, b}
[0.4, 0.5], if x = c.

By routine calculations we get A is an IVIF UP -subalgebra of X.

Proposition 3.3. If A = (RA, QA) is an IVIF UP -subalgebra in X, then for
all x ∈ X, RA(0) ≥ RA(x) and QA(0) ≤ QA(x).

Proof. It is easy and omitted. �
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Theorem 3.4. Let A be an IVIF UP -subalgebra of X. If there exists a sequence
{xn} in X such that limn→∞RA(xn) = [1, 1] and limn→∞QA(xn) = [0, 0]. Then
RA(0) = [1, 1] and QA(0) = [0, 0].

Proof. By Proposition 3.3, RA(0) ≥ RA(x) for all x ∈ X, therefore, RA(0) ≥
RA(xn) for every positive integer n. Consider, [1, 1] ≥ RA(0) ≥ limn→∞RA(xn)
= [1, 1]. Hence, RA(0) = [1, 1].

Again, by Proposition 3.3, QA(0) ≤ QA(x) for all x ∈ X, thus QA(0) ≤
QA(xn) for every positive integer n. Now, [0, 0] ≤ QA(0) ≤ limn→∞QA(xn) =
[0, 0]. Hence, QA(0) = [0, 0]. �

Proposition 3.5. If an IVIFS A = (RA, QA) in X is an IVIF UP -subalgebra,
then for all x ∈ X, RA(0 ∗ x) ≥ RA(x) and QA(0 ∗ x) ≤ QA(x).

Proof. For all x ∈ X, RA(0 ∗ x) ≥ rmin{RA(0), RA(x)} = rmin{RA(x ∗
x), RA(x)} ≥ rmin{rmin{RA(x), RA(x)}, RA(x)} = RA(x) and QA(0 ∗ x) ≤
rmax{QA(0), QA(x)}=rmax{QA(x ∗x), QA(x)}≤rmax{rmax{QA(x), QA(x)},
QA(x)} = QA(x). This completes the proof. �

Theorem 3.6. An IVIFSs A = {[RAL, RAU ], [QAL, QAU ]} in X is an IVIF
UP -subalgebra of X if and only if RAL, RAU , QAL and QAU are fuzzy UP -
subalgebras of X.

Proof. Let RAL and RAU be fuzzy UP -subalgebra of X and x, y ∈ X. Then
RAL(x ∗ y) ≥ min{RAL(x), RAL(y)} and RAU (x ∗ y) ≥ min{RAU (x), RAU (y)}.
Now,

RA(x ∗ y) = [RAL(x ∗ y), RAU (x ∗ y)]
≥ [min{RAL(x), RAL(y)},min{RAU (x), RAU (y)}]

= rmin
{
[RAL, (x), RAU (x)], [RAL(y), RAU (y)]

}
= rmin{RA(x), RA(y)}.

Again, let QAL and QAU be fuzzy UP -subalgebras of X and x, y ∈ X. Then
QAL(x ∗ y) ≤ max{QAL(x), QAL(y)} and QAU (x ∗ y) ≤ max{QAU (x), QAU (y)}.
Now,

QA(x ∗ y) = [QAL(x ∗ y), QAU (x ∗ y)]
≤ [max{QAL(x), QAL(y)},max{QAU (x), QAU (y)}]

= rmax
{
[QAL(x), QAU (x)], [QAL(y), QAU (y)]

}
= rmax{QA(x), QA(y)}.

Hence, A = {[RAL, RAU ], [QAL, QAU ]} is an IVIF UP -subalgebra of X.
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Conversely, assume that, A is an IVIF UP -subalgebra ofX. For any x, y ∈ X

[RAL(x ∗ y), RAU (x ∗ y)] = RA(x ∗ y) ≥ rmin{RA(x), RA(y)}
= rmin{[RAL(x), RAU (x)], [RAL(y), RAU (y)]

= [min{RAL(x), RAL(y)},min{RAU (x), RAU (y)}],
[QAL(x ∗ y), QAU (x ∗ y)] = QA(x ∗ y) ≤ rmax{QA(x), QA(y)}

= rmax{[QAL(x), QAU (x)], [QAL(y), QAU (y)]}
= [max{QAL(x), QAL(y)},max{QAU (x), QAU (y)}].

Thus RAL(x∗y) ≥ min{RAL(x), RAL(y)}, RAU (x∗y) ≥ min{RAU (x), RAU (y)},
QAL(x ∗ y) ≤ max{QAL(x), QAL(y)} and QAU (x ∗ y) ≤ max{QAU (x), QAU (y)}.
Therefore, RAL, RAU , QAL and QAU are fuzzy UP -subalgebras of X. �
Definition 3.7. Let A and B be two IVIFSs on X, where A = {⟨[RAL(x),
RAU (x)], [QAL(x), QAU ]⟩ : x ∈ X} and B = {⟨[RBL(x), RBU (x)], [QBL(x),
QBU ]⟩ : x ∈ X}. Then the intersection of A and B is denoted by A ∩B, and is
given by A∩B = {⟨x,RA∩B(x), QA∪B(x)⟩ : x ∈ X} = {⟨[min(RAL(x), RBL(x)),
min(RAU (x), RBU (x))], [max(QAL(x), QBL(x)),max(QAU (x), QBU (x))]⟩ : x ∈
X}.

Theorem 3.8. Let A1 and A2 be two IVIF UP -subalgebras of X. Then A1∩A2

is an IVIF UP -subalgebra of X.

Proof. Let x, y ∈ A1 ∩ A2. Then x, y ∈ A1 and A2. Since A1 and A2 are IVIF
UP -subalgebras of X, by Theorem 3.6,

RA1∩A2(x ∗ y) = [R(A1∩A2)L(x ∗ y), R(A1∩A2)U (x ∗ y)]
= [min(RA1L(x ∗ y), RA2L(x ∗ y)),

min(RA1U (x ∗ y), RA2U (x ∗ y))]
≥ [min(R(A1∩A2)L(x), R(A1∩A2)L(y)),

min(R(A1∩A2)U (x), R(A1∩A2)U (y))]

= rmin{RA1∩A2(x), RA1∩A2(y)}
and QA1∪A2(x ∗ y) = [Q(A1∪A2)L(x ∗ y), Q(A1∪A2)U (x ∗ y)]

= [max(QA1L(x ∗ y), QA2L(x ∗ y)),
max(QA1U (x ∗ y), QA2U (x ∗ y))]

≤ [max(Q(A1∪A2)L(x), Q(A1∪A2)L(y)),

max(Q(A1∪A2)U (x), Q(A1∪A2)U (y))]

= rmax{QA1∪A2(x), QA1∪A2(y)}.

This proves the theorem. �
Corollary 3.9. Let {Ai|i = 1, 2, 3, 4, . . .} be a family of IVIF UP -subalgebra
of X. Then

∩
Ai is also an IVIF UP -subalgebra of X where,

∩
Ai = {⟨x,

rminRAi(x), rmaxQAi(x)⟩ : x ∈ X}.
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Theorem 3.10. Let A = (RA, QA) be an IVIF UP -subalgebra of X and let
n ∈ N (the set of natural numbers). Then

(i) RA(
∏n x ∗ x) ≥ RA(x), for any odd number n,

(ii) QA(
∏n x ∗ x) ≤ QA(x), for any odd number n,

(iii) RA(
∏n x ∗ x) = RA(x), for any even number n,

(iv) QA(
∏n x ∗ x) = QA(x), for any even number n.

Proof. Let x ∈ X and assume that n is odd. Then n = 2p−1 for some positive
integer p. We prove the Theorem by induction.

Now RA(x∗x) = RA(0) ≥ RA(x) and QA(x∗x) = QA(0) ≤ QA(x). Suppose
that RA(

∏2p−1 x∗x) ≥ RA(x) and QA(
∏2p−1 x∗x) ≤ QA(x). Then by assump-

tion, RA(
∏2(p+1)−1 x ∗ x) = RA(

∏2p+1 x ∗ x) = RA(
∏2p−1 x ∗ (x ∗ (x ∗ x))) =

RA(
∏2p−1 x ∗ x) ≥ RA(x) and QA(

∏2(p+1)−1 x ∗ x) = QA(
∏2p+1 x ∗ x) =

QA(
∏2p−1 x ∗ (x ∗ (x ∗ x))) = QA(

∏2p−1 x ∗ x) ≤ QA(x), which proves (i) and
(ii). Proofs are similar for the cases (iii) and (iv). �

We define two operators
⊕
A and

⊗
A on IVIFS as follows:

Definition 3.11. Let A = (RA, QA) be an IVIFS defined on X. The operators⊕
A and

⊗
A are defined as

⊕
A = {⟨x,RA(x), RA(x)⟩ : x ∈ X} and

⊗
A =

{⟨x,QA(x), QA(x)⟩ : x ∈ X}.

Theorem 3.12. If A = (RA, QA) is an IVIF UP -subalgebra of X, then

(i)
⊕
A, and

(ii)
⊗
A, both are IVIF UP -subalgebras.

Proof. For (i), it is sufficient to show that RA satisfies the condition (UP2). Let
x, y ∈ X. Then RA(x ∗ y) = [1, 1]−RA(x ∗ y) ≤ [1, 1]− rmin{RA(x), RA(y)} =
rmax{1 − RA(x), 1 − RA(y)} = rmax{RA(x), RA(y)}. Hence,

⊕
A is an IVIF

UP -subalgebra of X.

For (ii), it is sufficient to show that QA satisfies the condition (UP1). Let
x, y ∈ X. Then QA(x ∗ y) = [1, 1]−QA(x ∗ y) ≥ [1, 1]− rmax{QA(x), QA(y)} =
rmin{1 − QA(x), 1 − QA(y)} = rmin{QA(x), QA(y)}. Hence,

⊗
A is also an

IVIF UP -subalgebra of X. �
The sets {x ∈ X : RA(x) = RA(0)} and {x ∈ X : QA(x) = QA(0)} are

denoted by IRA
and IQA

respectively. These two sets are also UP -subalgebra
of X.

Theorem 3.13. Let A = (RA, QA) be an IVIF UP -subalgebra of X, then the
sets IRA

and IQA
are UP -subalgebras of X.
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Proof. Let x, y ∈ IRA
. Then RA(x) = RA(0) = RA(y) and so, RA(x ∗ y) ≥

rmin{RA(x), RA (y)} = RA(0). By using Proposition 3.3, we know that RA(x∗
y) = RA(0) or equivalently x ∗ y ∈ IRA

.
Again, let x, y ∈ IQA

. Then QA(x) = QA(0) = QA(y) and so, QA(x ∗ y) ≤
rmax{QA(x), QA (y)} = QA(0). Again, by Proposition 3.3, we know that
QA(x ∗ y) = QA(0) or equivalently x ∗ y ∈ IQA

.
Hence, the sets IRA

and IQA
are UP -subalgebras of X. �

Theorem 3.14. Let B be a nonempty subset of X and A = (RA, QA) be an
IVIFS in X defined by

RA(x) =

{
[α1, α2], if x ∈ B

[β1, β2], otherwise
and QA(x) =

{
[γ1, γ2], if x ∈ B

[δ1, δ2], otherwise

for all [α1, α2], [β1, β2], [γ1, γ2] and [δ1, δ2] ∈ D[0, 1] with [α1, α2] ≥ [β1, β2] and
[γ1, γ2] ≤ [δ1, δ2] and α2+γ2 ≤ 1 ; β2+δ2 ≤ 1. Then A is an IVIF UP -subalgebra
of X if and only if B is a UP -subalgebra of X. Moreover, IRA

= B = IQA
.

Proof. Let A be an IVIF UP -subalgebra of X and x, y ∈ X be such that x, y ∈
B. Then RA(x ∗ y) ≥ rmin{RA(x), RA(y)} = rmin{[α1, α2], [α1, α2]} = [α1, α2]
and QA(x ∗ y) ≤ rmax{QA(x), QA(y)} = rmax{[γ1, γ2], [γ1, γ2]} = [γ1, γ2]. So
x ∗ y ∈ B. Hence, B is a UP -subalgebra of X.

Conversely, suppose that B is a UP -subalgebra ofX. Let x, y ∈ X. Consider
two cases:

Case (i). If x, y ∈ B then x ∗ y ∈ B, thus RA(x ∗ y) = [α1, α2] =
rmin{RA(x), RA(y)} and QA(x ∗ y) = [γ1, γ2] = rmax{QA(x), QA(y)}.

Case (ii). If x /∈ B or, y /∈ B, thenRA(x∗y) ≥ [β1, β2] = rmin{RA(x), RA(y)}
and QA(x ∗ y) ≤ [δ1, δ2] = rmax{QA(x), QA(y)}.

Hence, A is an IVIF UP -subalgebra of X.
Now, IRA

= {x ∈ X,RA(x) = RA(0)} = {x ∈ X,RA(x) = [α1, α2]} = B and
IQA

= {x ∈ X,QA(x) = QA(0)} = {x ∈ X,QA(x) = [γ1, γ2]} = B. �

Definition 3.15. Let A = (RA, QA) is an IVIF UP -subalgebra of X. For
[s1, s2], [t1, t2] ∈ D[0, 1], the set U(RA : [s1, s2]) = {x ∈ X : RA(x) ≥ [s1, s2]} is
called upper [s1, s2]-level of A and L(QA : [t1, t2]) = {x ∈ X : QA(x) ≤ [t1, t2]}
is called lower [t1, t2]-level of A.

Theorem 3.16. If A = (RA, QA) is an IVIF UP -subalgebra of X, then the
upper [s1, s2]-level and lower [t1, t2]-level of A are subalgebras of X.

Proof. Let x, y ∈ U(RA : [s1, s2]). Then RA(x) ≥ [s1, s2] and RA(y) ≥ [s1, s2].
It follows that RA(x∗y) ≥ rmin{RA(x), RA(y)} ≥ [s1, s2] so that x∗y ∈ U(RA :
[s1, s2]). Hence, U(RA : [s1, s2]) is a subalgebra of X.

Let x, y ∈ L(QA : [t1, t2]). Then QA(x) ≤ [t1, t2] and QA(y) ≤ [t1, t2]. It
follows that QA(x ∗ y) ≤ rmax{QA(x), QA(y)} ≤ [t1, t2] so that x ∗ y ∈ L(QA :
[t1, t2]). Hence, L(QA : [t1, t2]) is a subalgebra of X. �
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Theorem 3.17. Let A = (RA, QA) be an IVIFS in X, such that the sets U(RA :
[s1, s2]) and L(QA : [t1, t2]) are subalgebras of X for every [s1, s2], [t1, t2] ∈
D[0, 1]. Then A is an IVIF UP -subalgebra of X.

Proof. Let for every [s1, s2], [t1, t2] ∈ D[0, 1], U(RA : [s1, s2]) and L(QA : [t1, t2])
are subalgebras of X. In contrary, let x0, y0 ∈ X be such that RA(x0 ∗ y0) <
rmin{RA(x0), RA(y0)}. Let RA(x0) = [ϑ1, ϑ2] , RA(y0) = [ϑ3, ϑ4] and RA(x0 ∗
y0)=[s1, s2]. Then [s1, s2]<rmin{[ϑ1, ϑ2], [ϑ3, ϑ4]}=[min{ϑ1, ϑ3},min{ϑ2, ϑ4}].
So, s1 < min{ϑ1, ϑ3} and s2 < min{ϑ2, ϑ4}. Consider,

[ρ1, ρ2] =
1

2

[
RA(x0 ∗ y0) + rmin{RA(x0), RA(y0)}

]
=

1

2

[
[s1, s2] + [min{ϑ1, ϑ3},min{ϑ2, ϑ4}]

]
=

[1
2
(s1 +min{ϑ1, ϑ3}),

1

2
(s2 +min{ϑ2, ϑ4})

]
.

Therefore, min{ϑ1, ϑ3} > ρ1 =
1
2(s1+min{ϑ1, ϑ3}) > s1 and min{ϑ2, ϑ4} > ρ2 =

1
2(s2+min{ϑ2, ϑ4}) > s2. Hence, [min{ϑ1, ϑ3},min{ϑ2, ϑ4}] > [ρ1, ρ2] > [s1, s2],
so that x0 ∗ y0 /∈ U(RA : [s1, s2]) which is a contradiction, since RA(x0) =
[ϑ1, ϑ2]≥[min{ϑ1, ϑ3},min{ϑ2, ϑ4}]>[ρ1, ρ2] and RA(y0)=[ϑ3, ϑ4]≥[min{ϑ1, ϑ3},
min{ϑ2, ϑ4}] > [ρ1, ρ2]. This implies x0 ∗y0 ∈ U(RA : [s1, s2]). Thus RA(x∗y) ≥
rmin{RA(x), RA(y)} for all x, y ∈ X.

Again, in contrary, let x0, y0 ∈ X be such that QA(x0 ∗y0) > rmax{QA(x0),
QA(y0)}. Let QA(x0) = [ψ1, ψ2] , QA(y0) = [ψ3, ψ4] and QA(x0 ∗ y0) = [t1, t2].
Then [t1, t2] > rmax{[ψ1, ψ2], [ψ3, ψ4]} = [max{ψ1, ψ3},max{ψ2, ψ4}]. So t1 >
max{ψ1, ψ3} and t2 > max{ψ2, ψ4}. Let us consider,

[β1, β2] =
1

2

[
QA(x0 ∗ y0) + rmax{QA(x0), QA(y0)}

]
=

1

2

[
[t1, t2] + [max{ψ1, ψ3},max{ψ2, ψ4}]

]
=

[1
2
(t1 +max{ψ1, ψ3}),

1

2
(t2 +max{ψ2, ψ4})

]
.

Therefore, max{ψ1, ψ3} < β1 = 1
2(t1 + max{ψ1, ψ3}) < t1 and max{ψ2, ψ4} <

β2 =
1
2(t2 +max{ψ2, ψ4}) < t2. Hence, [max{ψ1, ψ3},max{ψ2, ψ4}] < [β1, β2] <

[t1, t2] so that x0 ∗ y0 /∈ L(QA : [t1, t2]) which is a contradiction, since QA(x0) =
[ψ1, ψ2] ≤ [max{ψ1, ψ3},max{ψ2, ψ4}] < [β1, β2] and QA(y0) = [ψ3, ψ4] ≤
[max{ψ1, ψ3},max{ψ2, ψ4}] < [β1, β2]. Hence, x0 ∗ y0 ∈ L(QA : [t1, t2]). Thus
QA(x ∗ y) ≤ rmax{QA(x), QA(y)} for all x, y ∈ X. �
Theorem 3.18. Any subalgebra of X can be realized as both the upper [s1, s2]-
level and lower [t1, t2]-level of some IVIF UP -subalgebra of X.

Proof. Let P be an IVIF UP -subalgebra of X, and A be an IVIFS on X defined
by

RA(x) =

{
[ξ1, ξ2], if x ∈ P

[0, 0], otherwise
and QA(x) =

{
[ω1, ω2], if x ∈ P

[1, 1], otherwise,
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for all [ξ1, ξ2], [ω1, ω2] ∈ D[0, 1] and ξ2+ω2 ≤ 1. We consider the following cases:

Case (i) If x, y ∈ P , then RA(x) = [ξ1, ξ2], QA(x) = [ω1, ω2] and RA(y) =
[ξ1, ξ2], QA(y) = [ω1, ω2]. Thus, RA(x ∗ y) = [ξ1, ξ2] = rmin{[ξ1, ξ2], [ξ1, ξ2]} =
rmin{RA(x), RA(y)} and QA(x ∗ y) = [ω1, ω2] = rmax{[ω1, ω2], [ω1, ω2]} =
rmax{QA(x), QA(y)}.

Case (ii) If x ∈ P and y /∈ P then RA(x) = [ξ1, ξ2], QA(x) = [ω1, ω2] and
RA(y) = [0, 0], QA(y) = [1, 1]. Thus, RA(x ∗ y) ≥ [0, 0] = rmin{[ξ1, ξ2], [0, 0]} =
rmin{RA(x), RA(y)} andQA(x∗y) ≤ [1, 1]=rmax{[ω1, ω2], [1, 1]}=rmax{QA(x),
QA(y)}.

Case (iii) If x /∈ P and y ∈ P then RA(x) = [0, 0], QA(x) = [1, 1], RA(y) =
[ξ1, ξ2], QA(y) = [ω1, ω2]. Thus, RA(x ∗ y) ≥ [0, 0] = rmin{[0, 0], [ξ1, ξ2]} =
rmin{RA(x), RA(y)} andQA(x∗y) ≤ [1, 1]=rmax{[1, 1], [ω1, ω2]}=rmax{QA(x),
QA(y)}.

Case (iv) If x /∈ P and y /∈ P then RA(x) = [0, 0], QA(x) = [1, 1] and
RA(y) = [0, 0], QA(y) = [1, 1]. Now RA(x ∗ y) ≥ [0, 0] = rmin{[0, 0], [0, 0]} =
rmin{RA(x), RA(y)} andQA(x∗y) ≤ [1, 1] = rmax{[1, 1], [1, 1]} = rmax{QA(x),
QA(y)}.

Therefore, A is an IVIF UP -subalgebra of X. �

Theorem 3.19. Let P be a subset of X and A be an IVIFS on X which is
given in the proof of Theorem 3.18. If A be realized as lower level subalgebra
and upper level subalgebra of some IVIF UP -subalgebra of X, then P is a IVIF
UP -subalgebra of X.

Proof. Let A be an IVIF UP -subalgebra of X, and x, y ∈ P . Then RA(x) =
[ξ1, ξ2] = RA(y) and QA(x) = [ω1, ω2] = QA(y). Thus RA(x∗y) ≥ rmin{RA(x),
RA(y)} = rmin{[ξ1, ξ2], [ξ1, ξ2]} = [ξ1, ξ2] and QA(x∗y) ≤ rmax{QA(x), QA(y)}
= rmax{[ω1, ω2], [ω1, ω2]} = [ω1, ω2], which imply that x ∗ y ∈ P . Hence, the
theorem. �

4. IVIF UP -ideals of UP -algebras

In this section we will define IVIF UP -ideal of UP -algebras and prove some
propositions and theorems. In what follows, let X denote a UP -algebra unless
otherwise specified.

Definition 4.1. An IVIFS A = (RA, QA) in X is called an IVIF UP -ideal of
X if it satisfies:

(UP3) RA(0) ≥ RA(x) and QA(0) ≤ QA(x)
(UP4) RA(x ∗ z) ≥ rmin{RA(x ∗ (y ∗ z)), RA(y)}
(UP5) QA(x ∗ z) ≤ rmax{QA(x ∗ (y ∗ z)), QA(y)},

for all x, y ∈ X.
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Example 4.2. Consider a UP -algebra X={0, a, b, c, d} with the following Cay-
ley table

∗ 0 a b c d

0 0 a b c d
a 0 0 b c d
b 0 0 0 c d
c 0 0 b 0 d
d 0 0 0 0 0

Let A = (RA, QA) be an IVIFS in X defined as

RA(x) =

{
[1, 1], if x ∈ {0, a, b}
[m1,m2], if x ∈ {c, d}

and QA(x) =

{
[0, 0], if x ∈ {0, a, b}
[n1, n2], if x ∈ {c, d},

where [m1,m2], [n1, n2] ∈ D[0, 1] and m2 + n2 ≤ 1. By routine calculations we
get A is an IVIF UP -ideal of X.

Lemma 4.3. Let A = (RA, QA) be an IVIF UP -ideal of X. If x, y ∈ X is such
that y ≤ x, then RA(x) ≥ RA(y) and QA(x) ≤ QA(y).

Proof. It is immediate and is omitted. �
Lemma 4.4. Let A = (RA, QA) be an IVIF UP -ideal of X and x, y, z, q ∈ X.
If x ≤ q ∗ (y ∗ z) then RA(x ∗ z) ≥ rmin{RA(q), RA(y)} and QA(x ∗ z) ≤
rmax{QA(q), QA(y)}.

Proof. Let x, y, z, q ∈ X such that x ≤ q ∗ (y ∗ z). Then x ∗ (q ∗ (y ∗ z)) = 0
and thus RA(x ∗ z) ≥ rmin{RA(x ∗ (y ∗ z)), RA(y)} ≥ rmin{rmin{RA{(x ∗ (q ∗
(y ∗z))), RA(q)}, RA(y)} = rmin{rmin{RA(0), RA(q)}, RA(y)} = rmin{RA(q),
RA(y)} andQA(x∗z) ≤ rmax{QA(x∗(y∗z)), QA(y)} ≤ rmax{rmax{QA{(x∗(q∗
(y∗z))), QA(q)}, QA(y)} = rmax{rmax{QA(0), QA(q)}, QA(y)} = rmax{QA(q),
QA(y)}. �
Corollary 4.5. Let A = (RA, QA) be an IVIF UP -ideal of X and x, y, z ∈ X.
If x ≤ y ∗ z then RA(x ∗ z) ≥ RA(y) and QA(x ∗ z) ≤ QA(y).

Proof. Let x, y, z ∈ X be such that x ≤ y ∗z. Then by putting q = 0 in Lemma
4.4 we have x∗(0∗(y∗z)) = 0 and thus RA(x∗z) ≥ rmin{RA(0), RA(y)} = RA(y)
and QA(x ∗ z) ≤ rmax{QA(0), QA(y)} = QA(y). �
Theorem 4.6. Every IVIF UP -ideal of a UP -algebra X is an IVIF UP -
subalgebra of X.

Proof. Let A = (RA, QA) is an IVIF UP -ideal of X and x, y ∈ X. By Propo-
sition 2.2, we have x ≤ y ∗ x. It follows from Lemma 4.3 that RA(y ∗ x) ≥
RA(x) ≥ rmin{RA(y), RA(x)} and QA(y ∗x) ≤ QA(x) ≤ rmax{QA(y), QA(x)}.
Hence A = (RA, QA) is an IVIF UP -ideal of X. �

The converse of Theorem 4.6 may not be true. For example, the IVIF UP -
subalgebra A = (RA, QA) in Example 3.2 is not an IVIF UP -ideal of X since
RA(b ∗ c) = [0.1, 0.2] < [0.5, 0.6] = rmin{RA(b ∗ (a ∗ c)), RA(a)}.
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Theorem 4.7. An IVIFSs A = {[RAL, RAU ], [QAL, QAU ]} in X is an IVIF
UP -ideal of X if and only if RAL, RAU , QAL and QAU are fuzzy UP -ideals
of X.

Proof. Since RAL(0) ≥ RAL(x), RAU (0) ≥ RAU (x), QAL(0) ≤ QAL(x) and
QAU (0) ≤ QAU (x), therefore RA(0) ≥ RA(x) and QA(0) ≤ QA(x).

Let RAL and RAU are fuzzy UP -ideals of X. Let x, y, z ∈ X. Then

RA(x ∗ z) = [RAL(x ∗ z), RAU (x ∗ z)]
≥ [min{RAL(x ∗ (y ∗ z)), RAL(y)},min{RAU (x ∗ (y ∗ z)), RAU (y)}]

= rmin
{
[RAL(x ∗ (y ∗ z)), RAU (x ∗ (y ∗ z))], [RAL(y), RAU (y)]

}
= rmin{RA(x ∗ (y ∗ z)), RA(y)}.

Let QAL and QAU are fuzzy UP -ideals of X and x, y ∈ X. Then

QA(x ∗ z) = [QAL(x ∗ z), QAU (x ∗ z)]
≤ [max{QAL(x ∗ (y ∗ z)), QAL(y)},max{QAU (x ∗ (y ∗ z)), QAU (y)}]

= rmax
{
[QAL(x ∗ (y ∗ z)), QAU (x ∗ (y ∗ z))], [QAL(y), QAU (y)]

}
= rmax{QA(x ∗ (y ∗ z)), QA(y)}.

Hence, A =
{
[RAL, RAU ], [QAL, QAU ]

}
is an IVIF UP -ideal of X.

Conversely, assume that, A is an IVIF UP -ideal of X. For any x, y ∈ X, we
have [RAL(x ∗ z), RAU (x ∗ z)] = RA(x ∗ z) ≥ rmin{RA(x ∗ (y ∗ z)), RA(y)} =
rmin{[RAL(x ∗ (y ∗ z)), RAU (x ∗ (y ∗ z))], [RAL(y), RAU (y)]} = [min{RAL(x ∗
(y ∗ z)), RAL(y)},min{RAU (x∗ (y ∗ z)), RAU (y)}] and [QAL(x∗ z), QAU (x∗ z)] =
QA(x ∗ z) ≤ rmax{QA(x ∗ (y ∗ z)), QA(y)} = rmax{[QAL(x ∗ (y ∗ z)), QAU (x ∗
(y ∗z))], [QAL(y), QAU (y)]} = [max{QAL(x∗ (y ∗z)), QAL(y)},max{QAU (x∗ (y ∗
z)), QAU (y)}]. Thus, RAL(x ∗ z) ≥ min{RAL(x ∗ (y ∗ z)), RAL(y)}, RAU (x ∗ z) ≥
min{RAU (x∗(y∗z)), RAU (y)}, QAL(x∗z)≤max{QAL(x∗(y∗z)), QAL(y)}, QAU (x∗
z) ≤ max{QAU (x∗ (y ∗z)), QAU (y)}. Hence, RAL, RAU , QAL and QAU are fuzzy
UP -ideals of X. �

Theorem 4.8. Let A1 and A2 be two IVIF UP -ideals of a UP -algebras X.
Then A1 ∩A2 is also an IVIF UP -ideal of UP -algebra X.

Proof. Let x, y ∈ A1 ∩ A2. Then x, y ∈ A1 and A2. Now, RA1∩A2(0) =
RA1∩A2(x ∗ x) ≥ rmin{RA1∩A2(x), RA1∩A2(x)} = RA1∩A2(x) and QA1∩A2(0) =
QA1∩A2(x ∗ x) ≤ rmin{QA1∩A2 (x), QA1∩A2(x)} = QA1∩A2(x). Also,

RA1∩A2(x ∗ z) = [R(A1∩A2)L(x ∗ z), R(A1∩A2)U (x ∗ z)]
≥ [min(R(A1∩A2)L(x ∗ (y ∗ z)), R(A1∩A2)L(y)),



REPRESENTATION OF UP -ALGEBRAS... 509

min(R(A1∩A2)U (x ∗ (y ∗ z)), R(A1∩A2)U (y))]

= rmin{RA1∩A2(x ∗ (y ∗ z)), RA1∩A2(y)}
and QA1∪A2(x ∗ z) = [Q(A1∪A2)L(x ∗ z), Q(A1∪A2)U (x ∗ z)]

≤ [max(Q(A1∪A2)L(x ∗ (y ∗ z)), Q(A1∪A2)L(y)),

max(Q(A1∪A2)U (x ∗ (y ∗ z)), Q(A1∪A2)U (y))]

= rmax{QA1∪A2(x ∗ (y ∗ z)), QA1∪A2(y)}.

Hence, A1 ∩A2 is also an IVIF UP -ideal of UP -algebra X. �

Corollary 4.9. Intersection of any family of IVIF UP -ideals of X is again an
IVIF UP -ideal of X.

Corollary 4.10. If A is an IVIF UP -ideal of X then A is also an IVIF UP -
ideal of X.

Theorem 4.11. If A = (RA, QA) is an IVIF UP -ideal of a UP -algebra X, then

(i)
⊕
A, and

(ii)
⊗
A, both are IVIF UP -ideals of UP -algebra X.

Proof. For (i), it is sufficient to show that RA satisfies the second part of the
conditions (UP3) and (UP5). We have RA(0) = 1−RA(0) ≤ 1−RA(x) ≤ RA(x).
Let x, y ∈ X. Then RA(x∗z) = 1−RA(x∗z) ≤ 1−rmin{RA(x∗(y∗z)), RA(y)} =
rmax{1− RA(x ∗ (y ∗ z)), 1− RA(y)} = rmax{RA(x ∗ (y ∗ z)), RA(y)}. Hence,⊕
A is an IVIF UP -ideal of UP -subalgebra X.
For (ii), it is sufficient to show thatQA satisfies the first part of the conditions

(UP3) and (UP4). We have QA(0) = 1 − QA(0) ≥ 1 − QA(x) ≥ QA(x). Let
x, y ∈ X. Then QA(x∗z) = 1−QA(x∗z) ≥ 1−rmax{QA(x∗ (y ∗z)), QA(y)} =
rmin{1 − QA(x ∗ (y ∗ z)), 1 − QA(y)} = rmin{QA(x ∗ (y ∗ z)), QA(y)}. Hence,⊗
A is an IVIF UP -ideal of UP -algebra X. �

Theorem 4.12. An IVIFS A is an IVIF UP -ideal of X if and only if the sets
U(RA : [s1, s2]) and L(QA : [t1, t2]) are either empty or UP -ideal of X for every
[s1, s2], [t1, t2] ∈ D[0, 1].

Proof. Suppose that A = (RA, QA) is an IVIF UP -ideal of X. Let U(RA :
[s1, s2]) and L(QA : [t1, t2]) be non-empty subset of X. Let [s1, s2] ∈ D[0, 1] and
x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ U(RA : [s1, s2]) and y ∈ U(RA : [s1, s2]).
Then RA(x ∗ z) ≥ rmin{RA(x ∗ (y ∗ z)), RA(y)} ≥ [s1, s2]. Thus x ∗ z ∈ U(RA :
[s1, s2]). Hence, U(RA : [s1, s2]) is a UP -ideal of X.

Let [t1, t2] ∈ D[0, 1] and x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ L(QA : [t1, t2])
and y ∈ L(QA : [t1, t2]). Then QA(x ∗ z) ≤ rmax{QA(x ∗ (y ∗ z)), QA(y)} ≤
[t1, t2]. Thus x ∗ z ∈ L(QA : [t1, t2]). Hence, L(QA : [t1, t2]) is a UP -ideal of X.

Conversely, assume that each non-empty level subset U(RA : [s1, s2]) and
L(QA : [t1, t2]) are UP -ideals of X. If there exist α, β, γ ∈ X such that RA(α ∗
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γ) < rmin{RA(α ∗ (β ∗ γ)), RA(β)}, then by taking [s′1, s
′
2] =

1
2

[
RA(α ∗ γ) +

rmin{RA(α ∗ (β ∗ γ), RA(β)}
]
, it follows that α ∗ (β ∗ γ) ∈ U(RA : [s′1, s

′
2]) and

β ∈ U(RA : [s′1, s
′
2]), but α ∗ γ /∈ U(RA : [s′1, s

′
2]), which is a contradiction.

Hence, U(RA : [s′1, s
′
2]) is not UP -ideal of X.

Again if there exist λ, δ, τ ∈ X such that QA(λ ∗ τ) > rmax{QA(λ ∗ (δ ∗
τ)), QA(δ)}, then by taking [t′1, t

′
2] =

1
2

[
QA(λ∗τ)+rmax{QA(λ∗(δ∗τ)), QA(δ)}

]
,

it follows that λ ∗ (δ ∗ τ) ∈ U(QA : [t′1, t
′
2]) and δ ∈ L(QA : [t′1, t

′
2]), but λ ∗ τ /∈

L(QA : [t′1, t
′
2]), which is a contradiction. Hence, L(QA : [t′1, t

′
2]) is not UP -ideal

of X.

Hence, A = (RA, QA) is an IVIF UP -ideal of X since it satisfies (UP3) and
(UP4). �

5. Images and preimages of IVIF UP -subalgebras and UP -ideals

In this section we will present some results on images and preimages of IVIF
UP -subalgebras and UP -ideals in UP -algebras.

Let f be a mapping from a setX into a set Y . LetB = (RB, QB) be an IVIFS
in Y . Then the inverse image of B, is defined as f−1(B) = (f−1(RB), f

−1(QB))
with the membership function and non-membership function respectively are
given by f−1(RB)(x) = RB(f(x)) and f−1(QB)(x) = QB(f(x)). It can be
shown that f−1(B) is an IVIFS.

Theorem 5.1. Let f : X → Y be a homomorphism of UP -algebras. If B =
(RB, QB) is an IVIF UP -subalgebra of Y , then the preimage f−1(B)=(f−1(RB),
f−1(QB)) of B under f is an IVIF UP -subalgebra of X.

Proof. Assume that B is an IVIF UP -subalgebra of Y and x, y ∈ X. Then
f−1(RB)(x∗y) = RB(f(x∗y)) = RB(f(x)∗f(y)) ≥ rmin{RB(f(x), RB(f(y))} =
rmin{f−1 (RB)(x), f

−1(RB)(y)} and f−1(QB)(x∗y) = QB(f(x∗y)) = QB(f(x)∗
f(y)) ≤ rmax{QB(f(x), QB(f(y))} = rmax{f−1(QB)(x), f

−1(QB)(y)}. There-
fore, f−1(B) is an IVIF UP -subalgebra of X. �

Definition 5.2. An IVIFS A in the UP -algebra X is said to have the rsup-
property and rinf-property if for any subset T of X there exist t0 ∈ T such that
RA(t0) = rsupt0∈TRA(t) and QA(t0) = rinft0∈TQA(t) respectively.

Definition 5.3. Let f be a mapping from the set X to the set Y . If A =
(RA, QA) is an IVIFS in X, then the image of A under f , denoted by f(A), and
is defined as

f(A) = {⟨x, frsup(RA), frinf (QA)⟩ : x ∈ Y },

where

frsup(RA)(y) =

{
rsupx∈f−1(y)RA(x), iff−1(y) ̸= ϕ

[0, 0], otherwise
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and

frinf (QA)(y) =

{
rinfx∈f−1(y)QA(x), iff−1(y) ̸= ϕ

[1, 1], otherwise.

Theorem 5.4. Let f : X → Y be a homomorphism from a UP -algebra X onto
a UP -algebra Y . If A = (RA, QA) is an IVIF UP -subalgebra of X, then the
image f(A) = {⟨x, frsup(RA), frinf (QA)⟩ : x ∈ Y } of A under f is an IVIF
UP -subalgebra of Y .

Proof. Let A = (RA, QA) be an IVIF UP -subalgebra of X and let y1, y2 ∈ Y .
We know that, {x1 ∗ x2 : x1 ∈ f−1(y1) and x2 ∈ f−1(y2)} ⊆ {x ∈ X : x ∈
f−1(y1 ∗ y2)}. Now,

frsup(RA)(y1 ∗ y2) = rsup{RA(x) : x ∈ f−1(y1 ∗ y2)}
≥ rsup{RA(x1 ∗ x2) : x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
≥ rsup{rmin{RA(x1), RA(x2)} : x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
= rmin{rsup{RA(x1) : x1 ∈ f−1(y1)}, rsup{RA(x2) : x2 ∈ f−1(y2)}}
= rmin{frsup(RA)(y1), frsup(RA)(y2)}

and

frinf (QA)(y1 ∗ y2) = rinf{QA(x) : x ∈ f−1(y1 ∗ y2)}
≤ rinf{QA(x1 ∗ x2) : x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
≤ rinf{rmax{QA(x1), QA(x2)} : x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
= rmax{rinf{QA(x1) : x1 ∈ f−1(y1)}, rinf{QA(x2) : x2 ∈ f−1(y2)}}
= rmax{frinf (QA)(y1), frinf (QA)(y2)}.

Hence, f(A) = {⟨x, frsup(RA), frinf (QA)⟩ : x ∈ Y } is an IVIF UP -subalgebra
of Y . �

Theorem 5.5. Let f : X → Y be a homomorphism of UP -algebras. If B =
(RB, QB) is an IVIF UP -ideal of Y , then the pre-image f−1(B) = (f−1(RB),
f−1(QB)) of B under f in X is an IVIF UP -ideal of X.

Proof. For all x ∈ X f−1(RB)(x) = RB(f(x)) ≤ RB(0) = RB(f(0)) =
f−1(RB)(0) and f

−1(QB)(x) = QB(f(x)) ≥ QB(0) = QB(f(0)) = f−1(QB)(0).
Let x, y ∈ X. Then f−1(RB)(x ∗ z) = RB(f(x ∗ z)) = RB(f(x) ∗ f(z)) ≥
rmin{RB(f(x)∗(f(y)∗f(z))), RB(f(y))}=rmin{RB(f (x∗(y∗z))), RB(f(y))} =
rmin{f−1(RB)(x ∗ (y ∗ z)), f−1(RB)(y)} and f−1(QB)(x ∗ z) = QB(f(x ∗ z)) =
QB(f(x)∗f(z)) ≤ rmax{QB(f(x)∗(f(y)∗f(z))), QB(f(y))} = rmax{QB(f(x∗
(y ∗ z))), QB(f(y))} = rmax{f−1(QB)(x ∗ (y ∗ z)), f−1(QB)(y)}. Hence, f−1(B)
is an IVIF UP -ideal of X. �

Theorem 5.6. Let f : X → Y be an epimorphism of UP -algebras. Then B is
an IVIF UP -ideal of Y, if f−1(B) = (f−1(RB), f

−1(QB)) of B under f in X
is an IVIF UP -ideal of X.
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Proof. For any x ∈ Y , ∃ a ∈ X such that f(a) = x. Then RB(x) = RB(f(a)) =
f−1(RB)(a) ≤ f−1(RB)(0) = RB(f(0)) = RB(0) and QB(x) = QB(f(a)) =
f−1(QB)(a) ≥ f−1(QB)(0) = QB(f(0)) = QB(0). Let x, y, z ∈ Y . Then
f(a) = x, f(b) = y and f(c) = z for some a, b, c ∈ X. Thus RB(x ∗ z) =
RB(f(a) ∗ f(c)) = MB(f(a ∗ c)) = f−1(RB)(a ∗ c) ≥ rmin{f−1(RB)(a ∗ (b ∗
c)), f−1(RB)(b)} = rmin{RB(f(a ∗ (b ∗ c))), RB(f(b))} = rmin{RB(f(a) ∗
(f(b) ∗ f(c))), RB(f(b))} = rmin{RB(x ∗ (y ∗ z)), RB(y)} and QB(x ∗ z) =
QB(f(a) ∗ f(c)) = NB(f(a ∗ c)) = f−1(QB)(a ∗ c) ≤ rmax{f−1(QB)(a ∗ (b ∗
c)), f−1(QB)(b)} = rmax{QB(f(a ∗ (b ∗ c))), QB(f(b))} = rmax{QB (f(a) ∗
(f(b) ∗ f(c))), QB(f(b))} = rmax{QB(x ∗ (y ∗ z)), QB(y)}. Then B is an IVIF
UP -ideal of Y . �

6. Equivalence relations on IVIF UP -ideals

Let IVIFI(X) denote the family of all interval-valued intuitionistic fuzzy ideals of
X and let ρ = [ρ1, ρ2] ∈ D[0, 1]. Define binary relations Uρ and Lρ on IVIFI(X)
as follows:

(A,B) ∈ Uρ ⇔ U(RA : ρ) = U(RB : ρ) and

(A,B) ∈ Lρ ⇔ L(QA : ρ) = L(QB : ρ)

respectively, for A=(RA, QA) and B=(RB, QB) in IVIFI(X). Then clearly Uρ

and Lρ are equivalence relations on IVIFI(X). For any A=(RA, QA)∈IV IFI(X),
let [A]Uρ (respectively, [A]Lρ) denote the equivalence class of A modulo Uρ

(respectively, Lρ), and denote by IVIFI(X)/Uρ (respectively, IVIFI(X)/Lρ) the
collection of all equivalence classes modulo Uρ (respectively, Lρ), i.e.,

IV IFI(X)/Uρ := {[A]Uρ |A = (RA, QA) ∈ IV IFI(X)},

respectively,

IV IFI(X)/Lρ := {[A]Lρ |A = (RA, QA) ∈ IV IFI(X)}.

These two sets are also called the quotient sets.
Now let T (X) denote the family of all ideals of X and let ρ = [ρ1, ρ2] ∈

D[0, 1]. Define mappings fρ and gρ from IVIFI(X) to T (X) ∪ {ϕ} by fρ(A) =
U(RA : ρ) and gρ(A) = L(QA : ρ), respectively, for all A = (RA, QA) ∈
IV IFI(X). Then fρ and gρ are clearly well-defined.

Theorem 6.1. For any ρ = [ρ1, ρ2] ∈ D[0, 1], the maps fρ and gρ are surjective
from IVIFI(X) to T (X) ∪ {ϕ}.

Proof. Let ρ = [ρ1, ρ2] ∈ D[0, 1]. Note that 0∼ = (0,1) is in IVIFI(X),
where 0 and 1 are interval-valued fuzzy sets in X defined by 0(x) = [0, 0]
and 1(x) = [1, 1] for all x ∈ X. Obviously fρ(0∼) = U(0 : ρ) =U([0, 0] :
[ρ1, ρ2])= ϕ =L([1, 1] : [ρ1, ρ2]) =L(1 : ρ)=gρ(0∼). Let P (̸= ϕ) ∈ IV IFI(X).
For P∼ = (χP , χP ) ∈ IV IFI(X), we have fρ(P∼)=U(χP : ρ) = P and gρ(P∼) =
L(χP : ρ) = P . Hence fρ and gρ are surjective. �
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Theorem 6.2. The quotient sets IVIFI(X)/Uρ and IVIFI(X)/Lρ are equipotent
to T (X) ∪ {ϕ} for every ρ ∈ D[0, 1].

Proof. For ρ ∈ D[0, 1] let f∗ρ (respectively, g∗ρ) be a map from IVIFI(X)/Uρ

(respectively, IVIFI(X)/Lρ) to T (X)∪{ϕ} defined by f∗ρ ([A]Uρ) = fρ(A) (respec-
tively, g∗ρ([A]Uρ) = gρ(A)) for all A = (RA, QA) ∈ IV IFI(X)}. If U(RA : ρ) =
U(RB : ρ) and L(QA : ρ) = L(QB : ρ) for A = (RA, QA) and B = (RB, QB)
in IVIFI(X), then (A,B) ∈ Uρ and (A,B) ∈ Lρ; hence [A]Uρ = [B]Uρ and
[A]Lρ = [B]Lρ . Therefore the maps f∗ρ and g∗ρ are injective. Now let P (̸= ϕ) ∈
IV IFI(X). For P∼ = (χP , χP ) ∈ IV IFI(X), we have

f∗ρ ([P∼]Uρ) = fρ(P∼) = U(χP : ρ) = P,

and

g∗ρ([P∼]Lρ) = gρ(P∼) = L(χP : ρ) = P.

Finally, for 0∼ = (0,1)∈ IV IFI(X) we get

f∗ρ ([0∼]Uρ) = fρ(0∼) = U(0 : ρ) = ϕ

and

g∗ρ([0∼]Lρ) = gρ(0∼) = L(1 : ρ) = ϕ.

This shows that f∗ρ and g∗ρ are surjective. This completes the proof. �
For any ρ ∈ D[0, 1], we define another relation Rρ on IVIFI(X) as follows:

(A,B) ∈ Rρ ⇔ U(RA : ρ) ∩ L(QA : ρ) = U(RB : ρ) ∩ L(QB : ρ),

for any A = (RA, QA) and B = (RB, QB) ∈ IV IFI(X). Then the relation Rρ

is an equivalence relation on IVIFI(X).

Theorem 6.3. For any ρ ∈ D[0, 1], the maps ψρ : IV IFI(X) → T (X) ∩ {ϕ}
defined by ψρ(A) = fρ(A) ∩ gρ(A) for each A = (RA, QA) ∈ X is surjective.

Proof. Let ρ ∈ D[0, 1]. For 0∼ = (0,1) ∈IV IFI(X),
ψρ(0∼)=fρ(0∼)∩gρ(0∼)=U(0 : ρ)∩L(1 : ρ) = ϕ.

For any H ∈ IV IFI(X), there exists H∼ = (χH , χH) ∈ IV IFI(X) such that
ψρ(H∼)=fρ(H∼)∩gρ(H∼)=U(χH : ρ)∩L(χH : ρ) = H.

This completes the proof. �

Theorem 6.4. The quotient sets IVIFI(X)/Rρ are equipotent to T (X) ∪ {ϕ}
for every ρ ∈ D[0, 1].

Proof. For ρ ∈ D[0, 1], define a map ψ∗
ρ : IV IFI(X)/Rρ → T (X) ∪ {ϕ} by

ψ∗
ρ([A]Rρ) = ψρ(A) for all [A]Rρ ∈ IV IFI(X)/Rρ. Assume that ψ∗

ρ([A]Rρ) =
ψ∗
ρ([B]Rρ) for any [A]Rρ and [B]Rρ ∈ IV IFI(X)/Rρ. Then fρ(A) ∩ gρ(A) =

fρ(B) ∩ gρ(B), i.e., U(RA : ρ) ∩ L(QA : ρ) = U(RB : ρ) ∩ L(QB : ρ). Hence
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(A,B) ∈ Rρ, and so [A]Rρ = [B]Rρ . Therefore the maps ψ∗
ρ are injective. Now

for 0∼ = (0,1)∈ IV IFI(X) we have

ψ∗
ρ([0∼]Rρ) = ψρ(0∼) = fρ(0∼) ∩ gρ(0∼) = U(0 : ρ) ∩ L(1 : ρ) = ϕ.

If H ∈ IV IFI(X), then for H∼ = (χH , χH) ∈ IV IFI(X), we obtain

ψ∗
ρ([H∼]Rρ) = ψρ(H∼) = fρ(H∼) ∩ gρ(H∼) = U(χH : ρ) ∩ L(χH : ρ) = H.

Thus ψ∗
ρ is surjective. This completes the proof. �

7. Product of IVIF UP -subalgebras and UP -ideals

In this section we will provide some new definitions on cartesian product of IVIF
UP -subalgebras and UP -ideals in UP -algebras.

Definition 7.1. Let A = (RA, QA) and B = (RB, QB) be two IVIFSs of X and
Y respectively. The cartesian product A×B = (RA ×RB, QA ×QB) of X × Y
is defined by (RA × RB)(x, y) = rmin{RA(x), RB(y)} and (QA × QB)(x, y) =
rmax{QA(x), QB(y)}, where RA × RB : X × Y → D[0, 1] and QA × QB :
X × Y → D[0, 1] for all (x, y) ∈ X × Y .

Remark 7.2. Let X and Y be UP -algebras. We define ∗ on X × Y by (x, y) ∗
(u, v) = (x ∗ u, y ∗ v) for every (x, y), (u, v) belong to X × Y , then clearly
(X × Y, ∗, (0, 0)) is a UP -algebra.

Definition 7.3. An IVIFS A × B = (RA × RB, QA × QB) of X × Y is called
an IVIF UP -subalgebra if it satisfies for all (x1, y1) and (x2, y2) ∈ X × Y

(i) (RA×RB)((x1, y1)∗(x2, y2)) ≥ rmin{(RA×RB)(x1, y1), (RA×RB)(x2, y2)},

(ii) (QA×QB)((x1, y1)∗(x2, y2)) ≤ rmax{(QA×QB)(x1, y1), (QA×QB)(x2, y2)}.

Definition 7.4. An IVIFS A × B = (RA × RB, QA × QB) of X × Y is called
an IVIF UP -ideal if it satisfies for all (x1, y1), (x2, y2) and (x3, y3) ∈ X × Y

(i) (RA×RB)(0, 0) ≥ (RA×RB)(x, y) and (QA×QB)(0, 0) ≤ (QA×QB)(x, y),

(ii) (RA × RB)((x1, y1) ∗ (x3, y3)) ≥ rmin{(RA × RB)((x1, y1) ∗ ((x2, y2) ∗
(x3, y3))), (RA ×RB)(x2, y2)} and

(iii) (QA × QB)((x1, y1) ∗ (x3, y3)) ≤ rmax{(QA × QB)((x1, y1) ∗ ((x2, y2) ∗
(x3, y3))), (QA ×QB)(x2, y2)}.

Theorem 7.5. Let A = (RA, QA) and B = (RB, QB) be IVIF UP -subalgebras
of X and Y respectively, then A×B is an IVIF UP -subalgebra of X × Y .
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Proof. For any (x1, y1) and (x2, y2) ∈ X × Y , we have

(RA ×RB)((x1, y1) ∗ (x2, y2)) = (RA ×RB)(x1 ∗ x2, y1 ∗ y2)
= rmin{RA(x1 ∗ x2), RB(y1 ∗ y2)}
≥ rmin{rmin{RA(x1), RA(x2)}, rmin{RB(y1), RB(y2)}}
= rmin{rmin{RA(x1), RB(y1)}, rmin{RA(x2), RB(y2)}}
= rmin{(RA ×RB)(x1, y1), (RA ×RB)(x2, y2)}

and

(QA ×QB)((x1, y1) ∗ (x2, y2)) = (QA ×QB)(x1 ∗ x2, y1 ∗ y2)
= rmax{QA(x1 ∗ x2), QB(y1 ∗ y2)}
≤ rmax{rmax{QA(x1), QA(x2)}, rmax{QB(y1), QB(y2)}}
= rmax{rmax{QA(x1), QB(y1)}, rmax{QA(x2), QB(y2)}}
= rmax{(QA ×QB)(x1, y1), (QA ×QB)(x2, y2)}.

Hence, A×B is an IVIF UP -subalgebra of X × Y . �

Definition 7.6. Let A = (RA, QA) and B = (RB, QB) be IVIF UP -subalgebras
of X and Y respectively. For [s1, s2], [t1, t2] ∈ D[0, 1], the set U(RA × RB :
[s1, s2]) = {(x, y) ∈ X×Y |(RA×RB)(x, y) ≥ [s1, s2]} is called upper [s1, s2]-level
of A×B and L(QA×QB : [t1, t2]) = {(x, y) ∈ X×Y |(QA×QB)(x, y) ≤ [t1, t2]}
is called lower [t1, t2]-level of A×B.

Theorem 7.7. For any IVIFS A and B, if A × B is an IVIF UP -subalgebra
of X ×Y then non-empty upper [s1, s2]-level cut U(RA×RB : [s1, s2]) and non-
empty lower [t1, t2]-level cut L(QA×QB : [t1, t2]) are UP -subalgebras of X ×Y ,
for all [s1, s2] and [t1, t2] ∈ D[0, 1].

Proof. Let A and B be such that A × B is an IVIF UP -subalgebra of X ×
Y , therefore, (RA × RB)((x1, y1) ∗ (x2, y2)) ≥ rmin{(RA × RB)(x1, y1), (RA ×
RB)(x2, y2)} and (QA×QB)((x1, y1)∗(x2, y2)) ≤ rmax{(QA×QB)(x1, y1), (QA×
QB)(x2, y2)}, for all (x1, y1) and (x2, y2) ∈ X × Y .

Again, let (x1, y1), (x2, y2) ∈ X × Y be such that (x1, y1) and (x2, y2) ∈
U(RA × RB : [s1, s2]). Then, (RA × RB)((x1, y1) ∗ (x2, y2)) ≥ rmin{(RA ×
RB)(x1, y1), (RA×RB)(x2, y2)} ≥ rmin([s1, s2], [s1, s2]) = [s1, s2]. This implies,
((x1, y1) ∗ (x2, y2)) ∈ U(RA × RB : [s1, s2]). Thus U(RA × RB : [s1, s2]) is a
UP -subalgebra of X ×Y . Similarly, L(QA×QB : [t1, t2]) is a UP -subalgebra of
X × Y . �

Proposition 7.8. Let A and B be IVIF UP -ideals of X, then A×B is an IVIF
UP -ideal of X ×X.

Proof. For any (x, y) ∈ X×X, we have (RA×RB)(0, 0) = rmin{RA(0), RB(0)}
≥ rmin{RA (x), RB(y)} = (RA×RB)(x, y) and (QA×QB)(0, 0) = rmax{QA(0),
QB(0)} ≤ rmin{QA(x), QB(y)} = (QA ×QB)(x, y).
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Let (x1, y1), (x2, y2), (x3, y3) ∈ X ×X. Then,

(RA ×RB)((x1, y1) ∗ (x3, y3))
= (RA ×RB)(x1 ∗ x3, y1 ∗ y3) = rmin{RA(x1 ∗ x3), RB(y1 ∗ y3)}
≥ rmin{rmin{RA(x1 ∗ (x2 ∗ x3)), RA(x2)}, rmin{RB(y1 ∗ (y2 ∗ y3)), RB(y2)}}
= rmin{rmin{RA(x1 ∗ (x2 ∗ x3)), RB(y1 ∗ (y2 ∗ y3))}, rmin{RA(x2), RB(y2)}}
= rmin{(RA ×RB)(x1 ∗ (x2 ∗ x3), y1 ∗ (y2 ∗ y3)), (RA ×RB)(x2, y2)}
= rmin{(RA ×RB)((x1, y1) ∗ ((x2, y2) ∗ (x3, y3))), (RA ×RB)(x2, y2)}

and

(QA ×QB)((x1, y1) ∗ (x3, y3))
= (QA ×QB)(x1 ∗ x3, y1 ∗ y3) = rmax{QA(x1 ∗ x3), QB(y1 ∗ y3)}
≤ rmax{rmax{QA(x1 ∗ (x2 ∗ x3)), QA(x2)}, rmax{QB(y1 ∗ (y2 ∗ y3)), QB(y2)}}
= rmax{rmax{QA(x1 ∗ (x2 ∗ x3)), QB(y1 ∗ (y2 ∗ y3))}, rmax{QA(x2), QB(y2)}}
= rmax{(QA ×QB)(x1 ∗ (x2 ∗ x3), y1 ∗ (y2 ∗ y3)), (QA ×QB)(x2, y2)}
= rmax{(QA ×QB)((x1, y1) ∗ ((x2, y2) ∗ (x3, y3))), (QA ×QB)(x2, y2)}.

Hence, A×B is an IVIF UP -ideal of X ×X. �

Lemma 7.9. If A = (RA, QA) and B = (RB, QB) are IVIF UP -ideals of X,
then

⊕
(A×B) = (RA ×RB, RA ×RB) is an IVIF UP -ideals of X ×X.

Proof. Let (RA×RB)(x, y) = rmin{RA(x), RB(y)}. Then 1−(RA×RB)(x, y) =
rmin{1−RA(x), 1−RB(y)}. This implies, 1− rmin{1−RA(x), 1−RB(y)} =
(RA × RB)(x, y). Therefore, (RA × RB)(x, y) = rmax{RA(x), RB(y)}. Hence,⊕

(A×B) = (RA ×RB, RA ×RB) is an IVIF UP -ideal of X ×X. �

Lemma 7.10. If A = (RA, QA) and B = (RB, QB) are IVIF UP -ideals of X,
then

⊗
(A×B) = (QA ×QB, QA ×QB) is an IVIF UP -ideal of X ×X.

Proof. Let (QA ×QB)(x, y) = rmax{QA(x), QB(y)}. This implies, 1− (QA ×
QB)(x, y) = rmax{1 − QA(x), 1 − QB(y)}. This is, 1 − rmax{1 − QA(x), 1 −
QB(y)} = (QA×QB)(x, y). Therefore, (QA×QB)(x, y) = rmin{QA(x), QB(y)}.
Hence,

⊗
(A×B) = (QA ×QB, QA ×QB) is an IVIF UP -ideal of X ×X. �

By the above two lemmas, it is not difficult to verify that the following
theorem is valid.

Theorem 7.11. The IVIFSs A = (RA, QA) and B = (RB, QB) are IVIF UP -
ideals of X if and only if

⊕
(A×B) = (RA ×RB, RA ×RB) and

⊗
(A×B) =

(QA ×QB, QA ×QB) are IVIF UP -ideal of X ×X.

Theorem 7.12. For any IVIFS A and B, if A × B is an IVIF UP -ideals of
X ×X then the non-empty upper [s1, s2]-level cut U(RA ×RB : [s1, s2]) and the
non-empty lower [t1, t2]-level cut L(QA ×QB : [t1, t2]) are UP -ideals of X ×X
for any [s1, s2] and [t1, t2] ∈ D[0, 1].
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Proof. Assume that A and B are IVIF UP -ideals of X. Let (a, b), (c, d),
(e, f) ∈ X × X be such that (a, b) ∗ ((e, f) ∗ (c, d)), (e, f) ∈ U(RA × RB :
[s1, s2]). Then (RA × RB)((a, b) ∗ (c, d)) ≥ rmin{(RA × RB)(a, b) ∗ ((e, f) ∗
(c, d)), (RA ×RB)(e, f)} ≥ rmin([s1, s2], [s1, s2]) = [s1, s2]. This implies, (a, b) ∗
(c, d) ∈ U(RA × RB : [s1, s2]). Thus U(RA × RB : [s1, s2]) is a UP -ideal of
X ×X. Similarly, L(QA ×QB : [t1, t2]) is a UP -ideal of X ×X. �
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